Lecture 10

Enzyme inhibition kinetics

Review getting and analyzing data:
Product vs time for increasing substrate concentrations

Initial velocity vs substrate conc.
time

[S]

Lineweaver-Burke:

Inhibition
Issue: changing the rate of enzyme activity in the cell (why?)

- Understand normal control of enzyme activity
- Analogs for crystalography
- Inhibitory drugs

Reversible inhibition: different types of mechanisms distinguishable by kinetics

- competitive
- non-competitive
- uncompetitive

Competitive inhibition

Inhibitor binds to the active site, competing with substrate

For a fixed concentration of inhibitor and increasing substrate, expect the maximum to be the same, K_{m} to increase

Equations:

See p. 399 (G and G) for derivation of modified Michaelis-Menten equation:
$\mathrm{V}=\mathrm{V}_{\max }[\mathrm{S}] /\left([\mathrm{S}]+\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)\right) \quad$ define $\mathrm{K}_{\mathrm{m}, \text { apparent }}=\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$
Note the effect of $1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}$ on K_{m} :
as [I] increases, $\mathrm{K}_{\mathrm{m} \text {, apparent }}=\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$ increases; at $[\mathrm{I}]=\mathrm{K}_{\mathrm{I}}, \mathrm{K}_{\mathrm{m} \text {, apparent }}=2 \times \mathrm{K}_{\mathrm{m}}$ (reduced "affinity" for S)
as [S] increases, $[\mathrm{S}] \gg \mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$, and $\mathrm{V}-->\mathrm{V}_{\text {max }}$
Lineweaver-Burke formulation: again replace K_{m} with $\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$
$1 / \mathrm{V}=\left\{\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right) / \mathrm{V}_{\max }\right\}(1 /[\mathrm{S}])+1 / \mathrm{V}_{\text {max }}$
as [I] increases, slope increases but the y intercept is unchanged

How calculate K_{I} ? If $\mathrm{K}_{\mathrm{m} \text {, apparent }}=\mathrm{K}_{\mathrm{m}}\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$, then

$$
\mathrm{K}_{\mathrm{I}}=\mathrm{K}_{\mathrm{m}}[\mathrm{I}] /\left(\mathrm{K}_{\mathrm{m}, \text { apparent }}-\mathrm{K}_{\mathrm{m}}\right)
$$

Non-competitive inhibition

Inhibitor and substrate bind to different sites

Expect a lower $\mathrm{V}_{\mathrm{max}}$, the same K_{m}

[S]

$\mathrm{K}_{\mathrm{m}} \sim[\mathrm{E}][\mathrm{S}] /[\mathrm{ES}] ; \mathrm{K}_{\mathrm{i}}=[\mathrm{E}][\mathrm{I}] /[\mathrm{EI}]=[\mathrm{ES}][\mathrm{I}] /[\mathrm{ESI}]$

$$
\mathrm{V}=\left(\mathrm{V}_{\max } /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{i}}\right)\right)[\mathrm{S}] \quad \text { define } \mathrm{V}_{\max , \text { apparent }}=\mathrm{V}_{\max } /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)
$$

as [I] increases, $\mathrm{V}_{\text {max, apparent }}=\mathrm{V}_{\text {max }} /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{I}}\right)$ decreases; at $[\mathrm{I}]=\mathrm{K}_{\mathrm{I}}, \mathrm{V}_{\text {max, apparent }}=1 / 2 \mathrm{~V}_{\text {max }}$

Uncompetitive inhibition

Inhibitor binds only to ES

Expect (?) a lower $\mathrm{V}_{\max }$ and a lower $\mathrm{K}_{\mathrm{m}}(!)$

$$
\begin{aligned}
& \mathrm{V}=\frac{\left(\mathrm{V}_{\max } /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{i}}\right)\right)[\mathrm{S}]}{\left(\mathrm{K}_{\mathrm{m}} /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{i}}\right)\right)+[\mathrm{S}]} \\
& \mathrm{V}_{\text {max }}, \text { apparent }=\mathrm{V}_{\max } /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{i}}\right) ; \mathrm{K}_{\mathrm{m}}, \text { apparent }=\mathrm{K}_{\mathrm{m}} /\left(1+[\mathrm{I}] / \mathrm{K}_{\mathrm{i}}\right)
\end{aligned}
$$

[S]

