Lecture 10

Enzyme inhibition kinetics

Review getting and analyzing data:

Product vs time for increasing substrate concentrations

Lineweaver-Burke:

Inhibition

Issue: changing the rate of enzyme activity in the cell (why?)

- Understand normal control of enzyme activity
- Analogs for crystalography
- Inhibitory drugs

Reversible inhibition: different types of mechanisms distinguishable by kinetics

- competitive
- non-competitive
- uncompetitive

Competitive inhibition

Inhibitor binds to the active site, competing with substrate

For a fixed concentration of inhibitor and increasing substrate, expect the maximum to be the same, K_m to increase

Equations:

 $\begin{array}{c} E+S \rightleftharpoons ES \twoheadrightarrow E+P \\ E+I \swarrow EI \end{array} \begin{array}{c} K_m \sim [E][S]/[ES] \\ K_I = [E][I]/[EI] \\ E_T = [E] + [ES] + [EI] \end{array}$

See p. 399 (G and G) for derivation of modified Michaelis-Menten equation:

$$V = V_{max}[S]/([S] + K_m (1 + [I]/K_I))$$
 define $K_{m, apparent} = K_m (1 + [I]/K_I)$

Note the effect of $1+[I]/K_I$ on K_m :

as [I] increases, K_{m, apparent} = K_m (1 + [I]/K_I) increases; at [I] = K_I, K_{m, apparent} = 2 x K_m (reduced "affinity" for S) as [S] increases, [S] >> K_m (1 + [I]/K_I), and V --> V_{max}

Lineweaver-Burke formulation: again replace K_m with $K_m (1 + [I]/K_I)$

$$1/V = \{K_m (1 + [I]/K_I)/V_{max}\}(1/[S]) + 1/V_{max}\}$$

as [I] increases, slope increases but the y intercept is unchanged

How calculate K_I? If K _{m, apparent} = K_m (1 + [I]/K_I), then $K_I = K_m [I]/(K_{m,apparent} - K_m)$

Non-competitive inhibition

Inhibitor and substrate bind to different sites

Expect a lower $V_{\mbox{max}},$ the same $K_{\mbox{m}}$

 $E + S \rightleftharpoons ES \longrightarrow E + P$ E + I **本** EI $EI + S \neq EIS$ $ES + I \neq EIS$

 $K_m \sim [E][S]/[ES]; \ K_i = [E][I]/[EI] = [ES][I]/[ESI]$

$$V = \frac{(V_{max}/(1 + [I]/K_i))[S]}{([S] + K_m)}$$

define $V_{max, apparent} = V_{max}/(1 + [I]/K_I)$

as [I] increases, $V_{max, apparent} = V_{max}/(1 + [I]/K_I)$ decreases; at [I] = K_I, $V_{max, apparent} = \frac{1}{2} V_{max}$

Uncompetitive inhibition

Inhibitor binds only to ES

 $E + S \rightleftharpoons ES \twoheadrightarrow E + P$ $ES + I \gneqq EIS$

Expect (?) a lower V_{max} and a lower $K_{m}\left(!\right)$

 $V = \frac{(V_{max}/(1 + [I]/K_i))[S]}{(K_m/(1 + [I]/K_i)) + [S]}$

 $V_{max, apparent} = V_{max}/(1 + [I]/K_{\underline{i}}); K_m, apparent = K_m/(1 + [I]/K_{\underline{i}})$

